Permutation Equivalence Classes of Kronecker Products of Unitary Fourier Matrices

نویسنده

  • Wojciech Tadej
چکیده

Kronecker products of unitary Fourier matrices play important role in solving multilevel circulant systems by a multidimensional Fast Fourier Transform. They are also special cases of complex Hadamard (Zeilinger) matrices arising in many problems of mathematics and thoretical physics. The main result of the paper is splitting the set of all kronecker products of unitary Fourier matrices into permutation equivalence classes. The choice of the permutation equivalence to relate the products is motivated by the quantum information theory problem of constructing maximally entangled bases of finite dimensional quantum systems. Permutation inequivalent products can be used to construct inequivalent, in a certain sense, maximally entangled bases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits

The quantum Fourier transform (QFT), a quantum analog of the classical Fourier transform, has been shown to be a powerful tool in developing quantum algorithms. However, in classical computing there is another class of unitary transforms, the wavelet transforms, which are every bit as useful as the Fourier transform. Wavelet transforms are used to expose the multi-scale structure of a signal an...

متن کامل

Rank-deficient submatrices of Kronecker products of Fourier matrices

We provide a set of maximal rank-deficient submatrices of a Kronecker product of two matrices A ⊗ B, and in particular the Kronecker product of Fourier matrices F = Fn1 ⊗ . . . ⊗ Fnk . We show how in the latter case, maximal rank-deficient submatrices can be constructedas tilings of rank-one blocks. Such tilings exist for any subgroup of a suitable Abelian group associated to the matrix F . The...

متن کامل

Local Spectrum of Truncations of Kronecker Products of Haar Distributed Unitary Matrices

We address the local spectral behavior of the random matrix Π1U ⊗kΠ2U ⊗k∗Π1, where U is a Haar distributed unitary matrix of size n×n, the factor k is at most c0 logn for a small constant c0 > 0, and Π1,Π2 are arbitrary projections on l n k 2 of ranks proportional to n. We prove that in this setting the k-fold Kronecker product behaves similarly to the well-studied case when k = 1. AMS Subject ...

متن کامل

Generating SIMD Vectorized Permutations

This paper introduces a method to generate efficient vectorized implementations of small stride permutations using only vector load and vector shuffle instructions. These permutations are crucial for highperformance numerical kernels including the fast Fourier transform. Our generator takes as input only the specification of the target platform’s SIMD vector ISA and the desired permutation. The...

متن کامل

STRUCTURED JORDAN CANONICAL FORMS FOR STRUCTURED MATRICES THAT ARE HERMITIAN, SKEW HERMITIAN OR UNITARY WITH RESPECT TO INDEFINITE INNER PRODUCTS VOLKER MEHRMANNy AND HONGGUO XUy

For inner products de ned by a symmetric inde nite matrix p;q, canonical forms for real or complex p;q-Hermitian matrices, p;q-skew Hermitian matrices and p;q-unitary matrices are studied under equivalence transformations which keep the class invariant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008